Medium
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
are unique.nums
is an ascending array that is possibly rotated.-104 <= target <= 104
function search(nums: number[], target: number): number { //NOSONAR
let lowEnd: number = 0
let highEnd: number = nums.length - 1
while (lowEnd <= highEnd) {
let half: number = Math.floor(lowEnd + (highEnd - lowEnd) / 2)
if (target === nums[half]) {
return half
}
if (nums[lowEnd] <= nums[half]) {
if (target < nums[half] && target >= nums[lowEnd]) {
highEnd = half
} else {
lowEnd = half + 1
}
} else if (target >= nums[half] && target <= nums[highEnd]) {
lowEnd = half + 1
} else {
highEnd = half
}
}
return -1
}
export { search }