Medium
Given the root
of a binary tree and an integer targetSum
, return the number of paths where the sum of the values along the path equals targetSum
.
The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes).
Example 1:
Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8
Output: 3
Explanation: The paths that sum to 8 are shown.
Example 2:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
Output: 3
Constraints:
[0, 1000]
.-109 <= Node.val <= 109
-1000 <= targetSum <= 1000
/**
* Definition for a binary tree node.
* public class TreeNode {
* public var val: Int
* public var left: TreeNode?
* public var right: TreeNode?
* public init() { self.val = 0; self.left = nil; self.right = nil; }
* public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }
* public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
func pathSum(_ root: TreeNode?, _ targetSum: Int) -> Int {
var count = 0
var prefixSums: [Int: Int] = [:]
var prefixSum = 0
func preOrderTraversal(_ root: TreeNode?, _ prefixSum: inout Int, _ prefixSums: inout [Int: Int]) {
guard let root = root else { return }
prefixSum += root.val
count += prefixSum == targetSum ? 1 : 0
count += prefixSums[prefixSum - targetSum] ?? 0
prefixSums[prefixSum, default: 0] += 1
preOrderTraversal(root.left, &prefixSum, &prefixSums)
preOrderTraversal(root.right, &prefixSum, &prefixSums)
prefixSums[prefixSum, default: 0] -= 1
prefixSum -= root.val
}
preOrderTraversal(root, &prefixSum, &prefixSums)
return count
}
}