Medium
Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.
If such an arrangement is not possible, it must rearrange it as the lowest possible order (i.e., sorted in ascending order).
The replacement must be in place and use only constant extra memory.
Example 1:
Input: nums = [1,2,3]
Output: [1,3,2]
Example 2:
Input: nums = [3,2,1]
Output: [1,2,3]
Example 3:
Input: nums = [1,1,5]
Output: [1,5,1]
Example 4:
Input: nums = [1]
Output: [1]
Constraints:
1 <= nums.length <= 1000 <= nums[i] <= 100To solve the “Next Permutation” problem in Swift with a Solution class, we can follow these steps:
Solution class.nextPermutation that takes an integer array nums as input and modifies it to find the next permutation in lexicographic order.i from the right such that nums[i] > nums[i - 1]. If no such index exists, reverse the entire array, as it’s already the last permutation.j from the right such that nums[j] > nums[i - 1].nums[i - 1] with nums[j].i.Here’s the implementation:
class Solution {
func swap(_ arr: inout [Int], _ i: Int, _ j: Int) {
var temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
}
func nextPermutation(_ nums: inout [Int]) {
var n = nums.count
var i = n - 2
while i >= 0 && nums[i] >= nums[i+1] {
i -= 1
}
if i >= 0 {
var k = n - 1
while k > i {
if nums[i] < nums[k] {
break
}
k -= 1
}
swap(&nums,i,k)
for j in i+1..<n-1 {
for k in j..<n {
if nums[j] > nums[k] {
swap(&nums,j,k)
}
}
}
} else if n == 2 {
swap(&nums,0,1)
} else {
nums = nums.sorted(by: { $0 < $1 })
}
}
}
This implementation provides a solution to the “Next Permutation” problem in Swift. It finds the next lexicographically greater permutation of the given array nums and modifies it in place.