Hard
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
To solve the Median of Two Sorted Arrays problem in Swift using a Solution
class, we’ll follow these steps:
Solution
class with a method named findMedianSortedArrays
.Here’s the implementation:
public class Solution {
public func findMedianSortedArrays(_ nums1: [Int], _ nums2: [Int]) -> Double {
let n1 = nums1.count
let n2 = nums2.count
if n1 > n2 {
return findMedianSortedArrays(nums2, nums1)
}
var low = 0
var high = n1
while low <= high {
let cut1 = (low + high) / 2
let cut2 = (n1 + n2 + 1) / 2 - cut1
let l1 = cut1 == 0 ? Int.min : nums1[cut1 - 1]
let l2 = cut2 == 0 ? Int.min : nums2[cut2 - 1]
let r1 = cut1 == n1 ? Int.max : nums1[cut1]
let r2 = cut2 == n2 ? Int.max : nums2[cut2]
if l1 <= r2 && l2 <= r1 {
if (n1 + n2) % 2 == 0 {
return (Double(max(l1, l2)) + Double(min(r1, r2))) / 2.0
} else {
return Double(max(l1, l2))
}
} else if l1 > r2 {
high = cut1 - 1
} else {
low = cut1 + 1
}
}
return 0.0
}
}
This implementation provides a solution to the Median of Two Sorted Arrays problem in Swift with a runtime complexity of O(log(min(m, n))).