Medium
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
nums = [2, 1]
, you can add a '+'
before 2
and a '-'
before 1
and concatenate them to build the expression "+2-1"
.Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1
Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
impl Solution {
pub fn find_target_sum_ways(nums: Vec<i32>, s: i32) -> i32 {
let mut sum: i32 = nums.iter().sum();
let s = s.abs();
// Invalid cases
if s > sum || (sum + s) % 2 != 0 {
return 0;
}
let target = (sum + s) / 2;
let n = nums.len();
// dp[i] represents the number of ways to form sum i
let mut dp = vec![vec![0; n + 1]; (target + 1) as usize];
dp[0][0] = 1;
// Handle empty knapsack condition
for i in 0..n {
if nums[i] == 0 {
dp[0][i + 1] = dp[0][i] * 2;
} else {
dp[0][i + 1] = dp[0][i];
}
}
// Fill the dp table
for i in 1..=target {
for j in 0..n {
dp[i as usize][j + 1] += dp[i as usize][j];
if nums[j] <= i {
dp[i as usize][j + 1] += dp[(i - nums[j]) as usize][j];
}
}
}
dp[target as usize][n]
}
}