Easy
Given an integer n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
’s in the binary representation of i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?impl Solution {
pub fn count_bits(num: i32) -> Vec<i32> {
let mut result = vec![0; (num + 1) as usize];
let mut border_pos = 1;
let mut incr_pos = 1;
for i in 1..=num {
// When we reach a power of 2, reset border_pos and incr_pos
if incr_pos == border_pos {
result[i as usize] = 1;
incr_pos = 1;
border_pos = i;
} else {
result[i as usize] = 1 + result[incr_pos as usize];
incr_pos += 1;
}
}
result
}
}