Easy
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1’s in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10 
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101 
Constraints:
0 <= n <= 105Follow up:
O(n log n). Can you do it in linear time O(n) and possibly in a single pass?__builtin_popcount in C++)?impl Solution {
    pub fn count_bits(num: i32) -> Vec<i32> {
        let mut result = vec![0; (num + 1) as usize];
        let mut border_pos = 1;
        let mut incr_pos = 1;
        
        for i in 1..=num {
            // When we reach a power of 2, reset border_pos and incr_pos
            if incr_pos == border_pos {
                result[i as usize] = 1;
                incr_pos = 1;
                border_pos = i;
            } else {
                result[i as usize] = 1 + result[incr_pos as usize];
                incr_pos += 1;
            }
        }
        
        result
    }
}