Hard
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
use std::collections::VecDeque;
struct MaxQueue {
queue: VecDeque<i32>,
}
impl MaxQueue {
fn new() -> Self {
Self {
queue: VecDeque::new(),
}
}
fn enqueue(&mut self, element: i32) {
while !self.queue.is_empty() && *self.queue.back().unwrap() < element {
self.queue.pop_back();
}
self.queue.push_back(element);
}
fn dequeue(&mut self, removed_element: i32) -> i32 {
if !self.queue.is_empty() && *self.queue.front().unwrap() == removed_element {
self.queue.pop_front().unwrap()
} else {
removed_element
}
}
// Get the maximum element in the queue
fn get_max(&self) -> Option<i32> {
self.queue.front().copied()
}
}
impl Solution {
pub fn max_sliding_window(nums: Vec<i32>, k: i32) -> Vec<i32> {
let k = k as usize;
let n = nums.len();
let mut max_queue = MaxQueue::new();
let mut result: Vec<i32> = vec![0; n - k + 1];
// Fill initial window in the MaxQueue
for i in 0..k {
max_queue.enqueue(nums[i]);
}
// Calculate maximum for each window
for i in k..n {
// Get maximum from MaxQueue
result[i - k] = max_queue.get_max().unwrap();
// Move window by dequeuing the element leaving the window
max_queue.dequeue(nums[i - k]);
// Add the current element to the MaxQueue
max_queue.enqueue(nums[i]);
}
// Get the maximum for the last window
result[n - k] = max_queue.get_max().unwrap();
result
}
}