Medium
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2
Output: 1
Constraints:
[2, 105]
.-109 <= Node.val <= 109
Node.val
are unique.p != q
p
and q
will exist in the tree.// Definition for a binary tree node.
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::rc::Rc;
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
impl Solution {
pub fn lowest_common_ancestor(root: Option<Rc<RefCell<TreeNode>>>, p: Option<Rc<RefCell<TreeNode>>>, q: Option<Rc<RefCell<TreeNode>>>) -> Option<Rc<RefCell<TreeNode>>> {
if let (Some(rn), Some(pn), Some(qn)) = (&root, &p, &q) {
if rn.borrow().val == pn.borrow().val || rn.borrow().val == qn.borrow().val {
return root;
}
let left = Self::lowest_common_ancestor(
rn.borrow().left.as_ref().map(Rc::clone),
Some(Rc::clone(pn)),
Some(Rc::clone(qn)),
);
let right = Self::lowest_common_ancestor(
rn.borrow().right.as_ref().map(Rc::clone),
Some(Rc::clone(pn)),
Some(Rc::clone(qn)),
);
if left.is_some() && right.is_some() {
return root;
}
if left.is_some() {
return left;
}
return right;
}
None
}
}