LeetCode-in-All

124. Binary Tree Maximum Path Sum

Hard

A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.

The path sum of a path is the sum of the node’s values in the path.

Given the root of a binary tree, return the maximum path sum of any non-empty path.

Example 1:

Input: root = [1,2,3]

Output: 6

Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.

Example 2:

Input: root = [-10,9,20,null,null,15,7]

Output: 42

Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.

Constraints:

Solution

// Definition for a binary tree node.
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
// 
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn max_path_sum(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
        let mut max = i32::MIN;
        Solution::helper(&root, &mut max);
        max
    }

    fn helper(node: &Option<Rc<RefCell<TreeNode>>>, max: &mut i32) -> i32 {
        if let Some(n) = node {
            let n = n.borrow();
            let left = Solution::helper(&n.left, max).max(0);
            let right = Solution::helper(&n.right, max).max(0);
            let current = n.val + left + right;
            *max = (*max).max(current);
            return n.val + left.max(right);
        }
        0
    }
}