Hard
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
impl Solution {
pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 {
let (nums1, nums2) = if nums1.len() > nums2.len() {
// Ensures nums1 is the smaller array
(nums2, nums1)
} else {
(nums1, nums2)
};
let n1 = nums1.len();
let n2 = nums2.len();
let mut low = 0;
let mut high = n1;
while low <= high {
let cut1 = (low + high) / 2;
let cut2 = (n1 + n2 + 1) / 2 - cut1;
let l1 = if cut1 == 0 { i32::MIN } else { nums1[cut1 - 1] };
let l2 = if cut2 == 0 { i32::MIN } else { nums2[cut2 - 1] };
let r1 = if cut1 == n1 { i32::MAX } else { nums1[cut1] };
let r2 = if cut2 == n2 { i32::MAX } else { nums2[cut2] };
if l1 <= r2 && l2 <= r1 {
// Found the correct partition
if (n1 + n2) % 2 == 0 {
return (f64::from(l1.max(l2)) + f64::from(r1.min(r2))) / 2.0;
} else {
return f64::from(l1.max(l2));
}
} else if l1 > r2 {
high = cut1 - 1;
} else {
low = cut1 + 1;
}
}
// Fallback case, should never hit
0.0
}
}