Hard
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.
arr = [2,3,4], the median is 3.arr = [2,3], the median is (2 + 3) / 2 = 2.5.Implement the MedianFinder class:
MedianFinder() initializes the MedianFinder object.void addNum(int num) adds the integer num from the data stream to the data structure.double findMedian() returns the median of all elements so far. Answers within 10-5 of the actual answer will be accepted.Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output: [null, null, null, 1.5, null, 2.0]
Explanation:
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105findMedian.5 * 104 calls will be made to addNum and findMedian.Follow up:
[0, 100], how would you optimize your solution?99% of all integer numbers from the stream are in the range [0, 100], how would you optimize your solution?class MedianFinder
def initialize()
@arr = []
end
=begin
:type num: Integer
:rtype: Void
=end
def add_num(num)
placement = @arr.bsearch_index {|a| num < a}
if placement.nil?
@arr << num
elsif placement == 0
@arr.unshift(num)
else
@arr.insert(placement, num)
end
end
=begin
:rtype: Float
=end
def find_median()
if @arr.size % 2 == 0
mid = @arr.size / 2
(@arr[mid] + @arr[mid - 1]).fdiv(2)
else
mid = @arr.size / 2
@arr[mid]
end
end
end
# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder.new()
# obj.add_num(num)
# param_2 = obj.find_median()