Medium
Given an m x n
grid of characters board
and a string word
, return true
if word
exists in the grid.
The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Example 1:
Input: board = [[“A”,”B”,”C”,”E”],[“S”,”F”,”C”,”S”],[“A”,”D”,”E”,”E”]], word = “ABCCED”
Output: true
Example 2:
Input: board = [[“A”,”B”,”C”,”E”],[“S”,”F”,”C”,”S”],[“A”,”D”,”E”,”E”]], word = “SEE”
Output: true
Example 3:
Input: board = [[“A”,”B”,”C”,”E”],[“S”,”F”,”C”,”S”],[“A”,”D”,”E”,”E”]], word = “ABCB”
Output: false
Constraints:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board
and word
consists of only lowercase and uppercase English letters.Follow up: Could you use search pruning to make your solution faster with a larger board
?
# @param {Character[][]} board
# @param {String} word
# @return {Boolean}
def exist(board, word)
@row_size = board.size
@col_size = board[0].size
if word.match(/^#{word[0]}+/)[0].size > word.match(/#{word[-1]}+$/)[0].size
word.reverse!
end
(0...board.size).each do |r|
(0...board[0].size).each do |c|
return true if traverse(board, word, 0, r, c)
end
end
false
end
def traverse(board, word, idx, i, j)
return false if (
(i < 0 ||
i >= @row_size) ||
(j < 0 ||
j >= @col_size) ||
word[idx] != board[i][j]
)
return true if idx == word.size - 1
board[i][j] = '#'
res = (traverse(board, word, idx + 1, i, j + 1) ||
traverse(board, word, idx + 1, i, j - 1) ||
traverse(board, word, idx + 1, i + 1, j) ||
traverse(board, word, idx + 1, i - 1, j))
board[i][j] = word[idx]
res
end