LeetCode-in-All

295. Find Median from Data Stream

Hard

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

Implement the MedianFinder class:

Example 1:

Input

["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]

Output: [null, null, null, 1.5, null, 2.0]

Explanation:

MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0 

Constraints:

Follow up:

Solution

(require data/heap racket/class)

(define median-finder%
  (class object%
    (super-new)
    
    ;; Max heap (stores smaller half, max at the top)
    (define max-heap (make-heap >))
    ;; Min heap (stores larger half, min at the top)
    (define min-heap (make-heap <))

    ;; add-num : exact-integer? -> void?
    (define/public (add-num num)
      (heap-add! max-heap num)                      ; Add to max-heap
      (heap-add! min-heap (heap-min max-heap))      ; Move max-heap root to min-heap
      (heap-remove-min! max-heap)                   ; Remove moved element

      ;; Balance: Ensure max-heap has at least as many elements as min-heap
      (when (> (heap-count min-heap) (heap-count max-heap))
        (heap-add! max-heap (heap-min min-heap))
        (heap-remove-min! min-heap)))

    ;; find-median : -> flonum?
    (define/public (find-median)
      (if (> (heap-count max-heap) (heap-count min-heap))
          (exact->inexact (heap-min max-heap))
          (/ (+ (heap-min max-heap) (heap-min min-heap)) 2.0)))))

;; Your median-finder% object will be instantiated and called as such:
;; (define obj (new median-finder%))
;; (send obj add-num num)
;; (define param_2 (send obj find-median))