Medium
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
nums = [2, 1]
, you can add a '+'
before 2
and a '-'
before 1
and concatenate them to build the expression "+2-1"
.Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation:
There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1
Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
total_sum = sum(nums)
s = abs(target)
# Invalid s, just return 0
if s > total_sum or (total_sum + s) % 2 != 0:
return 0
target = (total_sum + s) // 2
dp = [[0] * (len(nums) + 1) for _ in range(target + 1)]
dp[0][0] = 1
# empty knapsack must be processed specially
for i in range(len(nums)):
if nums[i] == 0:
dp[0][i + 1] = dp[0][i] * 2
else:
dp[0][i + 1] = dp[0][i]
for i in range(1, target + 1):
for j in range(len(nums)):
dp[i][j + 1] += dp[i][j]
if nums[j] <= i:
dp[i][j + 1] += dp[i - nums[j]][j]
return dp[target][len(nums)]