LeetCode-in-All

295. Find Median from Data Stream

Hard

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

Implement the MedianFinder class:

Example 1:

Input

["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]

Output: [null, null, null, 1.5, null, 2.0]

Explanation:

MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0 

Constraints:

Follow up:

Solution

import heapq

class MedianFinder:
    def __init__(self):
        # max_heap stores the lower half (as a max-heap)
        # min_heap stores the upper half (as a min-heap)
        self.max_heap = []
        self.min_heap = []

    def addNum(self, num: int) -> None:
        if not self.max_heap or -self.max_heap[0] > num:
            heapq.heappush(self.max_heap, -num)
        else:
            heapq.heappush(self.min_heap, num)

        # Balance the heaps if their sizes differ by more than one
        if len(self.max_heap) > len(self.min_heap) + 1:
            heapq.heappush(self.min_heap, -heapq.heappop(self.max_heap))
        elif len(self.min_heap) > len(self.max_heap) + 1:
            heapq.heappush(self.max_heap, -heapq.heappop(self.min_heap))

    def findMedian(self) -> float:
        if len(self.max_heap) > len(self.min_heap):
            return -self.max_heap[0]
        elif len(self.min_heap) > len(self.max_heap):
            return self.min_heap[0]
        else:
            return (-self.max_heap[0] + self.min_heap[0]) / 2.0

# Your MedianFinder object will be instantiated and called as such:
# obj = MedianFinder()
# obj.addNum(num)
# param_2 = obj.findMedian()