Medium
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 100class Solution {
    /**
     * @param Integer[][] $grid
     * @return Integer
     */
    public function minPathSum($a) {
        for ($i = 1; $i < count($a); $i++) {
            $a[$i][0] += $a[$i - 1][0];
        }
        for ($j = 1; $j < count($a[0]); $j++) {
            $a[0][$j] += $a[0][$j - 1];
        }
        for ($i = 1; $i < count($a); $i++) {
            for ($j = 1; $j < count($a[0]); $j++) {
                $a[$i][$j] += min($a[$i - 1][$j], $a[$i][$j - 1]);
            }
        }
        return $a[count($a) - 1][count($a[0]) - 1];
    }
}