Medium
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
are unique.nums
is an ascending array that is possibly rotated.-104 <= target <= 104
class Solution {
/**
* @param Integer[] $nums
* @param Integer $target
* @return Integer
*/
public function search($nums, $target) {
$lo = 0;
$hi = count($nums) - 1;
while ($lo <= $hi) {
$mid = (($hi - $lo) >> 1) + $lo;
if ($target == $nums[$mid]) {
return $mid;
}
if ($nums[$lo] <= $nums[$mid]) {
if ($nums[$lo] <= $target && $target <= $nums[$mid]) {
$hi = $mid - 1;
} else {
$lo = $mid + 1;
}
} elseif ($nums[$mid] <= $target && $target <= $nums[$hi]) {
$lo = $mid + 1;
} else {
$hi = $mid - 1;
}
}
return -1;
}
}