Medium
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000-104 <= nums[i] <= 104nums are unique.nums is an ascending array that is possibly rotated.-104 <= target <= 104class Solution {
    fun search(nums: IntArray, target: Int): Int {
        var mid: Int
        var lo = 0
        var hi = nums.size - 1
        while (lo <= hi) {
            mid = (hi - lo shr 1) + lo
            if (target == nums[mid]) {
                return mid
            }
            // if this is true, then the possible rotation can only be in the second half
            if (nums[lo] <= nums[mid]) {
                // the target is in the first half only if it's
                if (nums[lo] <= target && target <= nums[mid]) {
                    // included
                    hi = mid - 1
                } else {
                    // between nums[lo] and nums[mid]
                    lo = mid + 1
                }
                // otherwise, the possible rotation can only be in the first half
            } else if (nums[mid] <= target && target <= nums[hi]) {
                // the target is in the second half only if it's included
                lo = mid + 1
            } else {
                // between nums[hi] and nums[mid]
                hi = mid - 1
            }
        }
        return -1
    }
}