Easy
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1’s in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105Follow up:
O(n log n). Can you do it in linear time O(n) and possibly in a single pass?__builtin_popcount in C++)?/**
* @param {number} n
* @return {number[]}
*/
var countBits = function(num) {
const result = new Array(num + 1).fill(0)
let borderPos = 1
let incrPos = 1
for (let i = 1; i <= num; i++) {
if (incrPos === borderPos) {
result[i] = 1
incrPos = 1
borderPos = i
} else {
result[i] = 1 + result[incrPos++]
}
}
return result
}
export { countBits }