Medium
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 100/**
 * @param {number[][]} grid
 * @return {number}
 */
var minPathSum = function(grid) {
    const rows = grid.length
    const cols = grid[0].length
    if (rows === 1 && cols === 1) {
        return grid[0][0]
    }
    const dm = Array.from({ length: rows }, () => Array(cols).fill(0))
    let s = 0
    for (let r = rows - 1; r >= 0; r--) {
        dm[r][cols - 1] = grid[r][cols - 1] + s
        s += grid[r][cols - 1]
    }
    s = 0
    for (let c = cols - 1; c >= 0; c--) {
        dm[rows - 1][c] = grid[rows - 1][c] + s
        s += grid[rows - 1][c]
    }
    const recur = (r, c) => {
        if (
            dm[r][c] === 0 &&
            r !== rows - 1 &&
            c !== cols - 1
        ) {
            dm[r][c] =
                grid[r][c] +
                Math.min(
                    recur(r + 1, c),
                    recur(r, c + 1)
                )
        }
        return dm[r][c]
    }
    return recur(0, 0)
};
export { minPathSum }