Medium
Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
/**
* @param {number[][]} grid
* @return {number}
*/
var minPathSum = function(grid) {
const rows = grid.length
const cols = grid[0].length
if (rows === 1 && cols === 1) {
return grid[0][0]
}
const dm = Array.from({ length: rows }, () => Array(cols).fill(0))
let s = 0
for (let r = rows - 1; r >= 0; r--) {
dm[r][cols - 1] = grid[r][cols - 1] + s
s += grid[r][cols - 1]
}
s = 0
for (let c = cols - 1; c >= 0; c--) {
dm[rows - 1][c] = grid[rows - 1][c] + s
s += grid[rows - 1][c]
}
const recur = (r, c) => {
if (
dm[r][c] === 0 &&
r !== rows - 1 &&
c !== cols - 1
) {
dm[r][c] =
grid[r][c] +
Math.min(
recur(r + 1, c),
recur(r, c + 1)
)
}
return dm[r][c]
}
return recur(0, 0)
};
export { minPathSum }