LeetCode-in-All

51. N-Queens

Hard

The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.

Each solution contains a distinct board configuration of the n-queens’ placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.

Example 1:

Input: n = 4

Output: [[“.Q..”,”…Q”,”Q…”,”..Q.”],[”..Q.”,”Q…”,”…Q”,”.Q..”]]

Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above

Example 2:

Input: n = 1

Output: [[“Q”]]

Constraints:

Solution

/**
 * @param {number} n
 * @return {string[][]}
 */
var solveNQueens = function(n) {
    const board = Array.from({ length: n }, () => Array(n).fill('.'))
    const res = []
    const leftRow = new Array(n).fill(0)
    const upperDiagonal = new Array(2 * n - 1).fill(0)
    const lowerDiagonal = new Array(2 * n - 1).fill(0)

    const solve = (col) => {
        if (col === n) {
            res.push(construct(board))
            return
        }
        for (let row = 0; row < n; row++) {
            if (
                leftRow[row] === 0 &&
                lowerDiagonal[row + col] === 0 &&
                upperDiagonal[n - 1 + col - row] === 0
            ) {
                board[row][col] = 'Q'
                leftRow[row] = 1
                lowerDiagonal[row + col] = 1
                upperDiagonal[n - 1 + col - row] = 1
                solve(col + 1)
                board[row][col] = '.'
                leftRow[row] = 0
                lowerDiagonal[row + col] = 0
                upperDiagonal[n - 1 + col - row] = 0
            }
        }
    }

    const construct = (board) => {
        return board.map(row => row.join(''))
    }

    solve(0)
    return res
}

export { solveNQueens }