Medium
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000-104 <= nums[i] <= 104nums are unique.nums is an ascending array that is possibly rotated.-104 <= target <= 104/**
 * @param {number[]} nums
 * @param {number} target
 * @return {number}
 */
var search = function(nums, target) {
    let lo = 0
    let hi = nums.length - 1
    while (lo <= hi) {
        const mid = Math.floor((hi - lo) / 2) + lo
        if (nums[mid] === target) {
            return mid
        }
        if (nums[lo] <= nums[mid]) {
            if (nums[lo] <= target && target <= nums[mid]) {
                hi = mid - 1
            } else {
                lo = mid + 1
            }
        } else if (nums[mid] <= target && target <= nums[hi]) {
            lo = mid + 1
        } else {
            hi = mid - 1
        }
    }
    return -1
};
export { search }