Hard
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var findMedianSortedArrays = function (nums1, nums2) {
if (nums2.length < nums1.length) {
return findMedianSortedArrays(nums2, nums1)
}
let n1 = nums1.length,
n2 = nums2.length
let low = 0,
high = n1
while (low <= high) {
let cut1 = Math.floor((low + high) / 2)
let cut2 = Math.floor((n1 + n2 + 1) / 2) - cut1
let l1 = cut1 === 0 ? -Infinity : nums1[cut1 - 1]
let l2 = cut2 === 0 ? -Infinity : nums2[cut2 - 1]
let r1 = cut1 === n1 ? Infinity : nums1[cut1]
let r2 = cut2 === n2 ? Infinity : nums2[cut2]
if (l1 <= r2 && l2 <= r1) {
if ((n1 + n2) % 2 === 0) {
return (Math.max(l1, l2) + Math.min(r1, r2)) / 2.0
}
return Math.max(l1, l2)
} else if (l1 > r2) {
high = cut1 - 1
} else {
low = cut1 + 1
}
}
return 0.0
}
export { findMedianSortedArrays }