Medium
Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
func minPathSum(grid [][]int) int {
if len(grid) == 1 && len(grid[0]) == 1 {
return grid[0][0]
}
dm := make([][]int, len(grid))
for i := range dm {
dm[i] = make([]int, len(grid[0]))
}
sum := 0
for r := len(grid) - 1; r >= 0; r-- {
dm[r][len(grid[0])-1] = grid[r][len(grid[0])-1] + sum
sum += grid[r][len(grid[0])-1]
}
sum = 0
for c := len(grid[0]) - 1; c >= 0; c-- {
dm[len(grid)-1][c] = grid[len(grid)-1][c] + sum
sum += grid[len(grid)-1][c]
}
return recur(grid, dm, 0, 0)
}
func recur(grid [][]int, dm [][]int, r, c int) int {
if dm[r][c] == 0 && r != len(grid)-1 && c != len(grid[0])-1 {
dm[r][c] = grid[r][c] + min(recur(grid, dm, r+1, c), recur(grid, dm, r, c+1))
}
return dm[r][c]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}