Easy
Given an integer n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
’s in the binary representation of i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?-spec count_bits(N :: integer()) -> [integer()].
count_bits(N) ->
InitMap = maps:from_list([{X, 0} || X <- lists:seq(0, N div 2)]),
lists:reverse(do_count_bits(1, N, InitMap, [0])).
do_count_bits(I, N, _Map, Acc) when I > N ->
Acc;
do_count_bits(I, N, Map, Acc) ->
IBits = maps:get(I div 2, Map) + (I rem 2),
NewMap = case I > (N div 2) of
true -> Map;
false -> maps:put(I, IBits, Map)
end,
do_count_bits(I + 1, N, NewMap, [IBits | Acc]).