Hard
Given an unsorted integer array nums
, return the smallest missing positive integer.
You must implement an algorithm that runs in O(n)
time and uses constant extra space.
Example 1:
Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.
Example 2:
Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.
Example 3:
Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.
Constraints:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
-spec first_missing_positive(Nums :: [integer()]) -> integer().
first_missing_positive(Nums) ->
ets:new(hashmap, [named_table, ordered_set]),
insert_to_hashmap(Nums),
Res = find_1st_missing_pos(ets:tab2list(hashmap), 1),
ets:delete(hashmap),
Res.
insert_to_hashmap([]) ->
ok;
insert_to_hashmap([H | T]) when H > 0 ->
ets:insert(hashmap, {H, valid}),
insert_to_hashmap(T);
insert_to_hashmap([_ | T]) ->
insert_to_hashmap(T).
find_1st_missing_pos([], CurPos) ->
CurPos;
find_1st_missing_pos([{H, valid} | T], H) ->
find_1st_missing_pos(T, H + 1);
find_1st_missing_pos(_, CurPos) ->
CurPos.