LeetCode-in-All

5. Longest Palindromic Substring

Medium

Given a string s, return the longest palindromic substring in s.

Example 1:

Input: s = “babad”

Output: “bab” Note: “aba” is also a valid answer.

Example 2:

Input: s = “cbbd”

Output: “bb”

Example 3:

Input: s = “a”

Output: “a”

Example 4:

Input: s = “ac”

Output: “a”

Constraints:

Solution

-spec longest_palindrome(S :: unicode:unicode_binary()) -> unicode:unicode_binary().
longest_palindrome(S) ->
    Length = byte_size(S),
    case Length of
        0 -> <<>>; % Return empty binary if input is empty
        _ ->
            % Initialize variables for the best palindrome
            {Start, Len} = lists:foldl(
                fun(Index, {BestStart, BestLen}) ->
                    % Find the longest palindrome for odd and even length centers
                    {NewStart1, NewLen1} = find_longest_palindrome(S, Index, Index),
                    {NewStart2, NewLen2} = find_longest_palindrome(S, Index, Index + 1),
                    % Choose the longer of the two found palindromes
                    case NewLen1 >= NewLen2 of
                        true  -> update_best(BestStart, BestLen, NewStart1, NewLen1);
                        false -> update_best(BestStart, BestLen, NewStart2, NewLen2)
                    end
                end,
                {0, 0}, % Initial best palindrome start and length
                lists:seq(0, Length - 1) % Iterate through all positions
            ),
            % Extract the longest palindromic substring
            binary:part(S, Start, Len)
    end.

% Helper function to find the longest palindrome around the center
-spec find_longest_palindrome(S :: unicode:unicode_binary(), L :: integer(), R :: integer()) -> {integer(), integer()}.
find_longest_palindrome(S, L, R) ->
    Length = byte_size(S),
    case (L >= 0 andalso R < Length andalso binary:part(S, L, 1) =:= binary:part(S, R, 1)) of
        true ->
            find_longest_palindrome(S, L - 1, R + 1);
        false ->
            {L + 1, R - L - 1}
    end.

% Helper function to update the best palindrome found so far
-spec update_best(BestStart :: integer(), BestLen :: integer(), NewStart :: integer(), NewLen :: integer()) -> {integer(), integer()}.
update_best(BestStart, BestLen, NewStart, NewLen) ->
    case NewLen > BestLen of
        true  -> {NewStart, NewLen};
        false -> {BestStart, BestLen}
    end.