Easy
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1’s in the binary representation of i.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10 
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101 
Constraints:
0 <= n <= 105Follow up:
O(n log n). Can you do it in linear time O(n) and possibly in a single pass?__builtin_popcount in C++)?class Solution {
  List<int> countBits(int num) {
    List<int> result = List.filled(num + 1, 0);
    int borderPos = 1;
    int incrPos = 1;
    for (int i = 1; i < result.length; i++) {
      // When we reach a power of 2, reset borderPos and incrPos
      if (incrPos == borderPos) {
        result[i] = 1;
        incrPos = 1;
        borderPos = i;
      } else {
        result[i] = 1 + result[incrPos++];
      }
    }
    return result;
  }
}