Medium
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
are unique.nums
is an ascending array that is possibly rotated.-104 <= target <= 104
public class Solution {
public int Search(int[] nums, int target) {
int mid;
int lo = 0;
int hi = nums.Length - 1;
while (lo <= hi) {
mid = ((hi - lo) >> 1) + lo;
if (target == nums[mid]) {
return mid;
}
// if this is true, then the possible rotation can only be in the second half
if (nums[lo] <= nums[mid]) {
// the target is in the first half only if it's
if (nums[lo] <= target && target <= nums[mid]) {
// included
hi = mid - 1;
} else {
// between nums[lo] and nums[mid]
lo = mid + 1;
}
// otherwise, the possible rotation can only be in the first half
} else if (nums[mid] <= target && target <= nums[hi]) {
// the target is in the second half only if it's included
lo = mid + 1;
} else {
// between nums[hi] and nums[mid]
hi = mid - 1;
}
}
return -1;
}
}