Medium
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
nums = [2, 1]
, you can add a '+'
before 2
and a '-'
before 1
and concatenate them to build the expression "+2-1"
.Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3
Output: 5
Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3.
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1
Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
#include <stdio.h>
#include <stdlib.h>
int findTargetSumWays(int* nums, int numsSize, int s) {
int sum = 0;
s = abs(s);
for (int i = 0; i < numsSize; i++) {
sum += nums[i];
}
// Invalid target case, return 0
if (s > sum || (sum + s) % 2 != 0) {
return 0;
}
int target = (sum + s) / 2;
// Initialize the dp array
int** dp = (int**)malloc((target + 1) * sizeof(int*));
for (int i = 0; i <= target; i++) {
dp[i] = (int*)calloc(numsSize + 1, sizeof(int));
}
dp[0][0] = 1;
// Initialize the base case
for (int i = 0; i < numsSize; i++) {
if (nums[i] == 0) {
dp[0][i + 1] = dp[0][i] * 2;
} else {
dp[0][i + 1] = dp[0][i];
}
}
// Fill the dp table
for (int i = 1; i <= target; i++) {
for (int j = 0; j < numsSize; j++) {
dp[i][j + 1] = dp[i][j];
if (nums[j] <= i) {
dp[i][j + 1] += dp[i - nums[j]][j];
}
}
}
int result = dp[target][numsSize];
// Free the dynamically allocated memory
for (int i = 0; i <= target; i++) {
free(dp[i]);
}
free(dp);
return result;
}