Easy
Given an integer n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
’s in the binary representation of i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
Follow up:
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?#include <stdio.h>
#include <stdlib.h>
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* countBits(int num, int* returnSize) {
// Allocate memory for the result array and set the return size
int* result = (int*)malloc((num + 1) * sizeof(int));
*returnSize = num + 1;
int borderPos = 1;
int incrPos = 1;
result[0] = 0; // Base case: 0 has zero 1-bits
for (int i = 1; i <= num; i++) {
// When we reach a power of 2, reset borderPos and incrPos
if (incrPos == borderPos) {
result[i] = 1; // Powers of 2 have exactly one 1-bit
incrPos = 1;
borderPos = i;
} else {
result[i] = 1 + result[incrPos++];
}
}
return result;
}