LeetCode-in-All

300. Longest Increasing Subsequence

Medium

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Example 1:

Input: nums = [10,9,2,5,3,7,101,18]

Output: 4

Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.

Example 2:

Input: nums = [0,1,0,3,2,3]

Output: 4

Example 3:

Input: nums = [7,7,7,7,7,7,7]

Output: 1

Constraints:

Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?

Solution

#include <stdio.h>
#include <limits.h>

int lengthOfLIS(int* nums, int numsSize) {
    if (nums == NULL || numsSize == 0) {
        return 0;
    }

    int* dp = (int*)malloc((numsSize + 1) * sizeof(int));

    // Prefill the dp array with INT_MAX
    for (int i = 1; i <= numsSize; i++) {
        dp[i] = INT_MAX;
    }

    int left = 1;
    int right = 1;

    for (int i = 0; i < numsSize; i++) {
        int curr = nums[i];
        int start = left;
        int end = right;

        // Binary search within dp to find the correct position for curr
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (dp[mid] > curr) {
                end = mid;
            } else {
                start = mid;
            }
        }

        // Update dp array based on binary search result
        if (dp[start] > curr) {
            dp[start] = curr;
        } else if (curr > dp[start] && curr < dp[end]) {
            dp[end] = curr;
        } else if (curr > dp[end]) {
            dp[++end] = curr;
            right++;
        }
    }

    int result = right;

    free(dp);  // Free the allocated memory for dp array

    return result;
}