Medium
Given an integer array nums, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500-104 <= nums[i] <= 104Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
#include <stdio.h>
#include <limits.h>
int lengthOfLIS(int* nums, int numsSize) {
    if (nums == NULL || numsSize == 0) {
        return 0;
    }
    int* dp = (int*)malloc((numsSize + 1) * sizeof(int));
    // Prefill the dp array with INT_MAX
    for (int i = 1; i <= numsSize; i++) {
        dp[i] = INT_MAX;
    }
    int left = 1;
    int right = 1;
    for (int i = 0; i < numsSize; i++) {
        int curr = nums[i];
        int start = left;
        int end = right;
        // Binary search within dp to find the correct position for curr
        while (start + 1 < end) {
            int mid = start + (end - start) / 2;
            if (dp[mid] > curr) {
                end = mid;
            } else {
                start = mid;
            }
        }
        // Update dp array based on binary search result
        if (dp[start] > curr) {
            dp[start] = curr;
        } else if (curr > dp[start] && curr < dp[end]) {
            dp[end] = curr;
        } else if (curr > dp[end]) {
            dp[++end] = curr;
            right++;
        }
    }
    int result = right;
    free(dp);  // Free the allocated memory for dp array
    return result;
}