Hard
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
Example 1:
Input: word1 = “horse”, word2 = “ros”
Output: 3
Explanation:
horse -> rorse (replace ‘h’ with ‘r’)
rorse -> rose (remove ‘r’)
rose -> ros (remove ‘e’)
Example 2:
Input: word1 = “intention”, word2 = “execution”
Output: 5
Explanation:
intention -> inention (remove ‘t’)
inention -> enention (replace ‘i’ with ‘e’)
enention -> exention (replace ‘n’ with ‘x’)
exention -> exection (replace ‘n’ with ‘c’)
exection -> execution (insert ‘u’)
Constraints:
0 <= word1.length, word2.length <= 500
word1
and word2
consist of lowercase English letters.#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int minDistance(char* w1, char* w2) {
int n1 = strlen(w1);
int n2 = strlen(w2);
// Ensure w1 is the longer string
if (n2 > n1) {
return minDistance(w2, w1);
}
// Create a DP array to store the distances
int* dp = (int*)malloc((n2 + 1) * sizeof(int));
// Initialize the DP array
for (int j = 0; j <= n2; j++) {
dp[j] = j;
}
// Fill the DP table
for (int i = 1; i <= n1; i++) {
int pre = dp[0];
dp[0] = i; // First column represents distance to w1
for (int j = 1; j <= n2; j++) {
int tmp = dp[j];
dp[j] = (w1[i - 1] != w2[j - 1])
? 1 + (pre < dp[j] ? (pre < dp[j - 1] ? pre : dp[j - 1]) : (dp[j] < dp[j - 1] ? dp[j] : dp[j - 1]))
: pre;
pre = tmp; // Store the previous value
}
}
int result = dp[n2];
// Free allocated memory
free(dp);
return result;
}