Medium
There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.
Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109.
Example 1:

Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
Right -> Down -> Down
Down -> Down -> Right
Down -> Right -> Down
Constraints:
1 <= m, n <= 100#include <stdio.h>
#include <stdlib.h>
int uniquePaths(int m, int n) {
    // Step 1: Allocate a 2D array for dynamic programming
    int** dp = (int**)malloc(m * sizeof(int*));
    for (int i = 0; i < m; i++) {
        dp[i] = (int*)malloc(n * sizeof(int));
    }
    // Step 2: Initialize the first column
    for (int i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    // Step 3: Initialize the first row
    for (int j = 0; j < n; j++) {
        dp[0][j] = 1;
    }
    // Step 4: Fill the rest of the dp array
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        }
    }
    // Step 5: Store the result
    int result = dp[m - 1][n - 1];
    // Step 6: Free allocated memory
    for (int i = 0; i < m; i++) {
        free(dp[i]);
    }
    free(dp);
    return result;
}