Hard
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
#include <stdio.h>
#include <limits.h>
double findMedianSortedArrays(int* nums1, int n1, int* nums2, int n2) {
if (n1 > n2) {
return findMedianSortedArrays(nums2, n2, nums1, n1);
}
int low = 0, high = n1;
while (low <= high) {
int cut1 = (low + high) / 2;
int cut2 = (n1 + n2 + 1) / 2 - cut1;
int l1 = (cut1 == 0) ? INT_MIN : nums1[cut1 - 1];
int l2 = (cut2 == 0) ? INT_MIN : nums2[cut2 - 1];
int r1 = (cut1 == n1) ? INT_MAX : nums1[cut1];
int r2 = (cut2 == n2) ? INT_MAX : nums2[cut2];
if (l1 <= r2 && l2 <= r1) {
if ((n1 + n2) % 2 == 0) {
return (double)(fmax(l1, l2) + fmin(r1, r2)) / 2.0;
} else {
return (double)fmax(l1, l2);
}
} else if (l1 > r2) {
high = cut1 - 1;
} else {
low = cut1 + 1;
}
}
return 0.0;
}